EM3555
 Bi -Directional Compact Power and Energy Meter Installation Guide

ZL0093-0A

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, service or maintain it. The following special messages may appear throughout this bulletin or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of either symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

A DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

A WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, can result in death or serious injury.

A CAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, can result in minor or moderate injury.

CAUTION

CAUTION, used without the safety alert symbol, indicates a potentially hazardous situation which, if not avoided, can result in property damage.

NOTE: Provides additional information to clarify or simplify a procedure.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

This Class B digital apparatus complies with Canadian ICES-003.

CONTENTS

Safety Precautions 1
Installation Overview 1
Specifications 2
Introduction 4
Parts of the EM Series 4
Dimensions 5
Data Output 6
Installation 7
Supported System Types. 8
Wiring 9
Wiring Diagrams 10
Control Power 11
Fuse Recommendations 11
Wiring Notes 11
Display Screen Diagram 12
Quick Setup Instructions 13
Solid State Pulse Output 14
User Interface Menu Abbreviations Defined 15
User Interface for Data Configuration 16
Alert/Reset Information 18
User Interface for Setup 19
RS-485 Communications 21
Data Logging 22
Standard Modbus Default Settings 23
Modbus Point Map 24
Troubleshooting 41
China RoHS Compliance Information 41

SAFETY PRECAUTIONS

INSTALLATION OVERVIEW

A. DIN Rail Mounting

B. Screw Mounting

! DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Follow safe electrical work practices. See NFPA 70E in the USA or applicable local codes.
- This equipment must only be installed and serviced by qualified electrical personnel.
- Read, understand, and follow the instructions before installing this product.
- Turn off all power supplying equipment before working on or inside the equipment.
- Always use a properly rated voltage sensing device to confirm power is off.
- DO NOT DEPEND ON THIS PRODUCT FOR VOLTAGE INDICATION.
- Only install this product on insulated conductors.
- Install device in an appropriate electrical and fire enclosure per local regulations.
- ESD sensitive equipment. Ground yourself and discharge any static charge before handling this device.
- Any covers that may be displaced during the installation must be reinstalled before powering the unit.
- Do not install on the load side of a Variable Frequency Drive (VFD), aka Variable Speed Drive (VSD) or Adjustable Frequency Drive (AFD).

Failure to follow these instructions will result in death or serious injury.

NOTE: Observe correct CT orientation.
The meter can be mounted in two ways: on standard 35 mm DIN rail or screw-mounted to the interior surface of the enclosure.

1. Disconnect and lock out power. Use a properly rated voltage sensing device to confirm power is off.
2. Attach mounting clips to the underside of the housing by sliding them into the slots from the inside. The stopping pegs must face the housing, and the outside edge of the clip must be flush with the outside edge of the housing.
3. Snap the clips onto the DIN rail.
4. To prevent horizontal shifting across the DIN rail, use two end stop clips.
5. Disconnect and lock out power. Use a properly rated voltage sensing device to confirm power is off.
6. Attach the mounting clips to the underside of the housing by sliding them into the slots from the outside. The stopping pegs must face the housing, and the screw hole must be exposed on the outside of the housing.
7. Use three \#8 screws (not supplied) to mount the meter to the inside of the enclosure.

NOTE: For detailed instructions, please see the "Installation" section later in this guide.

SPECIFICATIONS

Table 1 Specifications

Type	Description
Measurement Accuracy	
Real Power and Energy	IEC 62053-22 Class 0.5S, ANSI C12.20 0.5\%
Reactive Power and Energy	IEC 62053-23 Class 2, 2\%
Current	0.4% (+0.015\% per ${ }^{\circ} \mathrm{C}$ deviation from $25^{\circ} \mathrm{C}$) from 5% to 100\% of range; $0.8 \%\left(+0.015 \%\right.$ per ${ }^{\circ} \mathrm{C}$ deviation from $25^{\circ} \mathrm{C}$) from 1% to 5% of range
Voltage	$0.4 \% ~\left(+0.015 \%\right.$ per ${ }^{\circ} \mathrm{C}$ deviation from $25^{\circ} \mathrm{C}$) from $90 \mathrm{~V}_{\mathrm{L}-\mathrm{N}}$ to 600 VAC ${ }_{\text {L-L }}$
Sample Rate	2520 samples per second, no blind time
Data Update Rate	1 sec
Type of Measurement	True RMS; One to three phase AC system
Input Voltage Characteristics	
Measured AC Voltage	$\begin{aligned} & \text { Minimum } 90 \mathrm{~V}_{\mathrm{L}-\mathrm{N}}\left(156 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}\right) \text { for stated accuracy; } \\ & \text { UL Maximums: } 600 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}\left(347 \mathrm{~V}_{\mathrm{L}-\mathrm{N}}\right) ; \\ & \text { CE Maximums: } 300 \mathrm{~V}_{\mathrm{L}-\mathrm{N}}\left(520 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}\right) \end{aligned}$
Metering Over-Range	+20\%
Impedance	$2.5 \mathrm{M} \Omega_{\mathrm{L-N}} / 5 \mathrm{M} \Omega_{\mathrm{L}-\mathrm{L}}$
Frequency Range	45 to 65 Hz

Input Current Characteristics

CT Scaling	Primary: Adjustable from 5 A to 32,000 A
Measurement Input Range	0 to 0.333 VAC or 0 to 1.0 VAC (+20\% over-range)
Impedance	$10.6 \mathrm{k} \Omega(1 / 3 \mathrm{~V}$ mode) or $32.1 \mathrm{k} \Omega$ (1 V mode)
Control Power	
AC	5 VA max.; 90 V min.; UL Maximums: $600 \mathrm{~V}_{\mathrm{L-L}}\left(347 \mathrm{~V}_{\mathrm{L}-\mathrm{N}}\right)$; CE Maximums: $300 \mathrm{~V}_{\mathrm{L}-\mathrm{N}}\left(520 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}\right)$
DC*	3 W max.; UL and CE: 125 to 300 VDC
Ride Through Time	100 msec at 120 VAC
Output	
Alarm Contacts	N.C., static output; (30 VAC/DC, 100 mA max. @ $25^{\circ} \mathrm{C}$, derate 0.56 mA per ${ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$)
Real Energy Pulse Contacts	N.O., static output; (30 VAC/DC, 100 mA max. @ $25^{\circ} \mathrm{C}$, derate 0.56 mA per ${ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$)
RS-485 Port	2-wire, 1200 to 38400 baud, Modbus RTU
Mechanical Characteristics	
Weight	0.62 lb (0.28 kg)
IP Degree of Protection (IEC 60529)	IP40 front display; IP20 Meter
Display Characteristics	Back-lit blue LCD
Terminal Block Screw Torque	$3.5 \mathrm{in} \cdot \mathrm{lb}(0.4 \mathrm{~N} \cdot \mathrm{~m})$ nominal/4.4 in $\mathrm{lb}(0.5 \mathrm{~N} \cdot \mathrm{~m}$) max.
Terminal Block Wire Size	14 to 24 AWG
Rail	T35 (35mm) DIN Rail per EN50022

Type	Description
Environmental Conditions	
Operating Temperature	-30° to $70^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Storage Temperature	-40° to $85^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
Humidity Range	<95\% RH (non-condensing)
Altitude of Operation	3 km max.
Metering Category	
US and Canada	CAT III; for distribution systems up to $347 \mathrm{~V}_{\text {L-N }} / 600$ VAC ${ }_{\text {L-L }}$
CE	CAT III; for distribution systems up to $300 \mathrm{~V}_{\text {L-N }} / 480 \mathrm{VAC}_{\text {L-L }}$
Dielectric Withstand	Per UL 508, EN61010
Conducted and Radiated Emissions	FCC part 15 Class B, EN55011/EN61000 Class B; (residential and light industrial)
Conducted and Radiated Immunity	EN61000 Class A (heavy industrial)
Safety	
US and Canada (cULus)	UL508 (open type device)/CSA 22.2 No. 14-05
Europe (CE)	EN61010-1:2001

* External DC current limiting is required, see fuse recommendations.

For use in a Pollution Degree 2 or better environment only. A Pollution Degree 2 environment must control conductive pollution and the possibility of condensation or high humidity. Consideration must be given to the enclosure, the correct use of ventilation, thermal properties of the equipment and the relationship with the environment.

Always use this product in the manner specified or the protection provided by the product may be impaired.

Provide a disconnect device to disconnect the meter from the supply source. Place this device in close proximity to the equipment and within easy reach of the operator, and mark it as the disconnecting device. The disconnecting device shall meet the relevant requirements of IEC 60947-1 and IEC 60947-3 and shall be suitable for the application. In the US and Canada, disconnecting fuse holders can be used. Provide overcurrent protection and disconecting device for supply conductors with approved current limiting devices suitable for protecting the wiring. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the device may be impaired.

FCC PART 15 INFORMATION

NOTE: This equipment has been tested by the manufacturer and found to comply with the limits for a class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area may cause harmful interference in which case the user will be required to correct the interference at his own expense. Modifications to this product without the express authorization of the manufacturer nullify this statement.

The EM3555 DIN Rail Power Meter provides a solution for measuring energy data with a single device. Inputs include Control Power, CTs, and 3-phase voltage. The EM3555 supports multiple output options, including solid state relay contacts, Modbus, data logging, and pulse. The LCD screen on the faceplate allows instant output viewing.

The EM3555 Meter is capable of bidirectional metering. Power is monitored in both directions (upstream and downstream from the meter). The meter is housed in a plastic enclosure suitable for installation on T35 DIN rail according to EN50022. The EM3555 can be mounted either on a DIN rail or in a panel. Observe correct CT orientation when installing the device.

Parts of the EM Series

Figure 1 shows the parts of the EM Series Compact Power and Energy Meter.

Figure 1 EM Series Meter

DIMENSIONS

Figure 2
EM Series Dimensions

DATA OUTPUT

Table 2 Data Output

Full Data Set (FDS):

Signed Power: real, reactive, and apparent 3-phase total and per phase
Real and Apparent Energy Accumulators: import, export, and net; 3-phase total and per phase
Reactive Energy Accumulators by Quadrant: 3-phase totals and per phase
Configurable for CT \& PT ratios, system type, and passwords
Diagnostic alerts
Current: 3-phase average and per phase
Volts: 3-phase average and per phase line-line and line-neutral
Power Factor: 3-phase average and per phase
Frequency
Power Demand: most recent and peak (import and export)
Demand Configuration: fixed, rolling block, and external sync
Data Logging:
Real Time Clock: user configurable
10 user configurable log buffers: each buffer holds 5760 16-bit entries (user configures which 10 data points are stored in these buffers)

User configurable logging interval (when configured for a 15 minute interval, each buffer holds 60 days of data)
Continuous and Single Shot logging modes: user selectable
Auto write pause: read logs without disabling the meter's data logging mode

INSTALLATION

NOTE: Observe correct CT orientation.
The meter can be mounted in two ways: on standard 35 mm DIN rail or screw-mounted to the interior surface of the enclosure.
A. DIN Rail Mounting

1. Disconnect and lock out power. Use a properly rated voltage sensing device to confirm power is off.
2. Attach mounting clips to the underside of the housing by sliding them into the slots from the inside. The stopping pegs must face the housing, and the outside edge of the clip must be flush with the outside edge of the housing.
3. Snap the clips onto the DIN rail. See diagram of the underside of the housing (Figure 3).

Figure 3 Attach mounting clips for DIN Rail

4. To prevent horizontal shifting across the DIN rail, use two end stop clips.
B. Screw Mounting

1. Disconnect and lock out power. Use a properly rated voltage sensing device to confirm power is off.
2. Attach the mounting clips to the underside of the housing by sliding them into the slots from the outside. The stopping pegs must face the housing, and the screw hole must be exposed on the outside of the housing.
3. Use three \#8 screws (not supplied) to mount the meter to the inside of the enclosure. See diagram of the underside of the housing (Figure 4).

Figure 4 Attach Clips for screw mounting

SUPPORTED SYSTEM TYPES

The meter has a number of different possible system wiring configurations (see Wiring Diagrams). To configure the meter, set the System Type via the User Interface or Modbus register 130. The System Type tells the meter which of its current and voltage inputs are valid, which are to be ignored, and if neutral is connected. Setting the correct System Type prevents unwanted energy accumulation on unused inputs, selects the formula to calculate the Theoretical Maximum System Power, and determines which phase loss algorithm is to be used. The phase loss algorithm is configured as a percent of the Line-to-Line System Voltage (except when in System Type 10) and also calculates the expected Line to Neutral voltages for system types that have Neutral (12 \& 40).

Values that are not valid in a particular System Type will display as "----" on the User Interface or as QNAN in the Modbus registers.

Table 3 Supported system types

	CTs		Voltage Connections			System Type		Phase Loss Measurements			Wiring Diagram
Number of wires	Qty	ID	Qty	ID	Type	Modbus Register 130	User Interface: SETUP> S SYS	VLL	VLN	Balance	Diagram number
Single-Phase Wiring											
2	1	A	2	A, N	L-N	10	$1 \mathrm{~L}+1 \mathrm{n}$		AN		1
2	1	A	2	A, B	L-L	11	2L	AB			2
3	2	A, B	3	A, B, N	L-L with N	12	$2 \mathrm{~L}+1 \mathrm{n}$	AB	AN, BN	AN-BN	3
Three-Phase Wiring											
3	3	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \\ & \mathrm{C} \end{aligned}$	3	A, B, C	Delta	31	3L	$\begin{aligned} & \mathrm{AB}, \mathrm{BC}, \\ & \mathrm{CA} \end{aligned}$		AB-BC-CA	4
4	3	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \\ & \mathrm{C} \end{aligned}$	4	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \\ & \mathrm{C}, \mathrm{~N} \end{aligned}$	Grounded Wye	40	$3 L+1 n$	$\begin{aligned} & \mathrm{AB}, \mathrm{BC}, \\ & \mathrm{CA} \end{aligned}$	AN, BN, CN	AN-BN-CN \& AB-BC-CA	5, 6

WIRING

DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E in the USA or applicable local codes.
- This equipment must only be installed and serviced by qualified electrical personnel.
- Turn off all power supplying equipment before working on or inside the equipment.
- Always use a properly rated voltage sensing device to confirm power is off.
- Read, understand, and follow the instructions before installing this product.
Failure to follow these instructions will result in death or serious injury.

To avoid distortion, use parallel wires for control power and voltage inputs.
The following symbols are used in the wiring diagrams on the following pages.
Table 5 Wiring Symbols

Symbol	Description
	Voltage Disconnect Switch
	Fuse (installer is responsible for ensuring compliance with local requirements. No fuses are included with the meter.)
$\frac{1}{-}$	Earth ground
	Current Transducer
OL	Potential Transformer
	Protection device containing a voltage disconnect switch with a fuse or disconnect circuit breaker. The protection device must be rated for the available short-circuit current at the connection point.

CAUTION

RISK OF EQUIPMENT DAMAGE

- This product is designed only for use with 1 V or 0.33 V current transducers (CTs).
- DO NOT USE CURRENT OUTPUT (e.g. 5A) CTs ON THIS PRODUCT.

Failure to follow these instructions can result in overheating and permanent equipment damage.

WIRING DIAGRAMS

\triangle WARNING

RISK OF ELECTRIC SHOCK

CT negative terminals are referenced to the meter's neutral and may be at elevated voltages Do not contact meter terminals while the unit is connected
Do not connect or short other circuits to the CT terminals
Failure to follow these instructions can result in death or serious injury.

Diagram 1: 1-Phase Line-to-Neutral 2- Wire System 1 CT Use System Type 10 (1L + 1n)

Diagram 3: 1-Phase Direct Voltage Connection 2 CT
Use System Type 12 (2L + 1n)

Diagram 5: 3-Phase 4-Wire Wye Direct Voltage Input Connection 3 CT
Use System Type $40(3 L+1 n)$

Diagram 2: 1-Phase Line-to-Line 2-Wire System 1 CT Use System Type 11 (2L)

Diagram 4: 3-Phase 3-Wire 3 CT no PT

Diagram 6: 3-Phase 4-Wire Wye Connection 3 CT 3 PT
Use System Type 40 (3L + 1n)

CONTROL POWER

Direct Connect Control Power (Line to Line)

Line to Line from 90VAC to 600 VAC (UL) (520 VAC for CE). In UL installations the lines may be floating (such as a delta). If any lines are tied to an earth (such as a corner grounded delta), see the Line to Neutral installation limits. In CE compliant installations, the lines must be neutral (earth) referenced at less than $300 \mathrm{VAC}_{\mathrm{L}-\mathrm{N}}$

DC Control Power from 125 VDC to 300 VDC (UL and CE max.)

Direct Connect Control Power (Line to Neutral)

Line to Neutral from 90 VAC to 347 VAC (UL) or 300 VAC (CE)

Control Power Transformer (CPT) Connection

The Control Power Transformer may be wired L-N or L-L. Output to meet meter input requirements

FUSE RECOMMENDATIONS

WIRING NOTES

Keep the fuses close to the power source (obey local and national code requirements).

For selecting fuses and circuit breakers, use the following criteria:

- Select current interrupt capacity based on the installation category and fault current capability.
- Select over-current protection with a time delay.
- The voltage rating should be sufficient for the input voltage applied.
- Provide overcurrent protection and disconnecting means to protect the wiring. For DC installations, external circuit protection must be provided. Suggested: 0.5 A, time delay fuses.
- The earth connection is required for electromagnetic compatibility (EMC) and is not a protective earth ground.
- Use 14-24 gauge wire for all connections.
- When tightening terminals, ensure that the correct torque is applied: $3.5-4.4 \mathrm{in} \cdot \mathrm{lb}(0.4-0.5 \mathrm{~N} \cdot \mathrm{~m})$.

DISPLAY SCREEN DIAGRAM
Figure 5 Display Screen

QUICK SETUP INSTRUCTIONS

These instructions assume the meter is set to factory defaults. If it has been previously configured, all optional values should be checked.

1. Press the ${ }^{\top}$ or button repeatedly until GE THP screen appears.
2. Press © to the $\operatorname{PFSinTI}$ screen.
3. Press Θ through the digits. Press \oplus or Θ to select the password (the default is 대재). Exit the screen to the right.
4. Press \oplus or ${ }^{\ominus}$ to select the parameter to configure.
5. The first Setup screen is 5 [[MM (set RS-485 communications).
 or to select the Modbus address.
b. Press Θ to the $\$ F H T H$ screen. Press Θ or Θ to select the baud rate.
c. Press ${ }^{\oplus}$ to the PFPR screen. Press ${ }^{\top}$ or ${ }^{\ominus}$ to select the parity.
d. Press \odot back to the 5 [[CM screen.
6. Press ${ }^{-1}$ to the (Set Current Transducer) screen.
a. Press Θ to the $\left[T\right.$ ${ }^{\prime}$ ' screen. Press Θ or Θ to select the voltage mode Current Transducer output voltage (default is 0.33).
b. Press Θ to the [T 5 screen and through the digits. Press Θ or Θ to select the CT size in amps.
c. Press Θ back to the $5[T$ screen.
7. Press to the 595 (Set System) screen.
a. Press \odot to the $545 T M$ screen. Press Θ or \odot to select the System Type (see wiring diagrams).
b. Press \oplus back to the 5545 screen.
8. (Optional) Press * the ther (Set Potential Transformer) screen. If PTs are not used, then skip this step.
a. © to the FATIIC screen and through the digits. Use the ${ }^{+}$or \odot buttons to select the Potential Transformer step down ratio.
b. © back to the 5 PT screen.
9. ${ }^{5}$ to the ${ }^{\prime}$ (Set System Voltage) screen.
a. (-) to the VLL (or VLN if system is $1 \mathrm{~L}-1 \mathrm{n}$) screen and through the digits. Use the ${ }^{+}$or ${ }^{-}$buttons to select the Line to Line System Voltage.
b. © back to the $\mathrm{S} V$ screen.
10. Use the * to exit the setup screen and then SETLP.
11. Check that the wrench is not displayed on the LCD.
a. If the wrench is displayed, press ${ }^{+}$) or ${ }^{-}$to find the FILERT screen.
b. Press Θ through the screens to see which alert is on.

For full setup instructions, see the configuration instructions on the following pages.

The meter has one normally open (N.O.) KY Form A output and one normally closed (N.C.) solid-state output.* One is dedicated to import energy (Wh), and the other to Alarm. See the Setup section for configuration information.

Figure 6 Solid State Pulse Outputs

The solid state pulse outputs are rated for 30 VAC/DC nom.
Maximum load current is 100 mA at $25^{\circ} \mathrm{C}$. Derate 0.56 mA per ${ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

* While the relay used for the Phase Loss contact is Normally Closed (contacts are closed when the meter is not powered), closure indicates the presence of an alarm; either loss of phase, when the meter is powered, or loss of power when the meter is not. The contacts are open when the meter is powered and no phase loss alarm conditions are present.
** The over-current protective device must be rated for the short circuit current at the connection point.

UI MENU ABBREVIATIONS DEFINED

The user can set the display mode to IEC or IEEE notation in the SETUP menu.

Table 6 IEC and IEEE Abbreviations

Main Menu		
IEC	IEEE	Description
D	D	Demand
MAX	M	Maximum Demand
P	W	Present Real Power
Q	VAR	Present Reactive Power
S	VA	Present Apparent Power
A	A	Amps
UAB, UBC, UAC	$\begin{aligned} & \text { VAB, VBC, } \\ & \text { VAC } \end{aligned}$	Voltage Line-to-Line
V	VLN	Voltage Line-to-Neutral
PF	PF	Power Factor
U	VLL	Voltage Line-to-Line
HZ	HZ	Frequency
KSh	KVAh	Accumulated Apparent Energy
KQh	KVARh	Accumulated Reactive Energy
KPh	KWh	Accumulated Real Energy
PLOSS	PLOSS	Phase Loss
LOWPF	LOWPF	Low Power Factor Error
F ERR	F ERR	Frequency Error
I OVR	I OVR	Over Current
V OVR	V OVR	Over Voltage
PULSE	PULSE	kWh Pulse Output Overrun (configuration error)
_PHASE	_PHASE	Summary Data for 1, 2, or 3 active phases
ALERT	ALERT	Diagnostic Alert Status
INFO	INFO	Unit Information
MODEL	MODEL	Model Number
OS	OS	Operating System
RS	RS	Reset System
SN	SN	Serial Number
RESET	RESET	Reset Data
PASWD	PASWD	Enter Reset or Setup Password
ENERG	ENERG	Reset Energy Accumulators
DEMND	DEMND	Reset Demand Maximums
仑		Import
$\sqrt{5}$		Export
PULS_	PULS_	Pulse Counter (if equipped)

USER INTERFACE FOR DATA CONFIGURATION

IEC Display Mode
$\stackrel{\circ}{\circ}$

 $\frac{\Delta}{\nabla} \xrightarrow[\mathrm{PF}+\mathrm{KPh}]{\mathrm{B}-\mathrm{KPh} 0}$
$\Delta \quad$ BPHAS

ALERT/RESET INFORMATION

USER INTERFACE FOR SETUP

Note: Bold is the Default.

To Setup page 1 " SCOM "

Set Phase Loss:

VOLTS - Phase Loss Voltage: The fraction of the system voltage below which Phase Loss Alarm is on. For system types with neutral, the Line to Neutral voltage is also calculated and tested. If the System Voltage is 600 and the fraction is set to 0.10 , then the Phase Loss threshold will be 60 volts.
IMBAL - Phase Loss Imbalance: The fractional difference in Line to Line voltages above which Phase Loss Alarm is on. For system types with neutral, the Line to Neutral voltages are also tested. For system types $1+\mathrm{N}$ (10) and 2 (11), imbalance is not tested.

Set Pulse:

The System Type, CT size, PT Ratio, and System Voltage must all be configured before setting the Pulse Energy. If any of these parameters are changed, the meter will hunt for a new Pulse Duration, but will not change the Pulse Energy. If it cannot find a solution, the meter will display the wrench, show "ConF" in the ALARM -> PULSE screen, and enable Energy pulse output configuration error bit in the Modbus Diagnostic Alert Bitmap (if equipped).
Wh/P - Set Pulse Energy: In Watt Hours (\& VAR Hours, if present) per Pulse. When moving down to a smaller energy, the meter will not allow the selection if it cannot find a pulse duration that will allow the pulse output to keep up with Theoretical Maximum System Power (see S_PWR screen). When moving up to a larger energy, the meter will jump to the first value where it can find a valid solution.
mS/P - Minimum Pulse Duration Time: This read only value is set by the meter to the slowest duration (in mS per closure) that will keep up with the Theoretical Maximum System Power. The open time is greater than or equal to the closure time. The maximum Pulses Per Second (PPS) is shown in yellow.

Set Demand Interval:

INTRV - The number of Sub-Intervals (1 to 6) in a Demand Interval. Default is 1 (block demand).
SEC - Sub-Interval length in seconds. Default is 900 (15 minutes). Set to 0 for external sync-to-comms (Modbus units only).

Set Display Units: +/- to switch between:
 IEEE - VLL VLN W VAR VA Units.
 IEC - U V P Q S Units.

Set Passwords:

SETUP - The Password to enter the SETUP menu.
RESET - The Password to enter the RESET menu.

RS-485 COMMUNICATIONS

Daisy-chaining Devices to the Power Meter

The RS-485 slave port allows the power meter to be connected in a daisy chain with up to 632 -wire devices. In this bulletin, communications link refers to a chain of devices that are connected by a communications cable.

Figure 7 Daisy-chaining multiple devices

- The terminal's voltage and current ratings are compliant with the requirements of the EIA RS-485 communications standard.
- The RS-485 transceivers are $1 / 4$ unit load or less.
- RS-485+ has a $47 \mathrm{k} \Omega$ pull up to +5 V , and RS-485- has a $47 \mathrm{k} \Omega$ pull down to Shield (RS-485 signal ground).
- Wire the RS-485 bus as a daisy chain from device to device, without any stubs. Use 120Ω termination resistors at each end of the bus (not included).
- Shield is not internally connected to Earth Ground.
- Connect Shield to Earth Ground somewhere on the RS-485 bus.
- Use 14-24 gauge wire for all connections.
- When tightening terminals, ensure that the correct torque is applied: $3.5-4.4 \mathrm{in} \cdot \mathrm{lb}(0.4-0.5 \mathrm{~N} \cdot \mathrm{~m})$.

Figure 8 Torque requirements

DATA LOGGING

The EM3555 includes a data logging feature that records 10 meter parameters, each in its own buffer.

Configuration

Reading Data

Read/Write Collision

Use register 150 to set the data logging time subinterval. Writing to the storage buffer is triggered by the subinterval timer. The default subinterval is 15 minutes (at a 15 minute interval setting, the buffers hold 60 days of data). An external timer can be used over Modbus by setting this register to 0 .

Use register 159 to turn on data logging and select either Single Shot or Continuous mode. The default settings are data logging on and set to Continuous mode. In Single Shot mode, the meter records data until the buffer is full. When the buffer is full, the meter stops recording new readings. Data for this time period is kept, but newer energy information is lost. In Continuous mode, the meter continues to record energy data as long as the meter is operating. The buffer can only hold 5760 entries at one time, however, so when the number of records exceeds 5760, the oldest entry is deleted to make room for the newest.

Registers 169-178 contain the pointers to 10 data storage buffers. Each buffer is user-configurable with the Modbus address of the 16-bit data output to be stored. Measurement variables with 32-bit data, such as floating point data or 32-bit integer energy accumulators, require two buffers. However, the lower 16 bits of an integer energy accumulator can be stored in a single buffer (optional).

When the EM3555 is first installed, the buffers contain QNAN data, with a value of 0×8000. This data is considered invalid. If the buffer is reset at any point, all entries in the buffers are overwritten with this 0×8000 value, indicating that it is invalid. All invalid data is overwritten as the meter fills the buffer with new data entries.

Use register 158 to choose which buffer to read. When this register value is set to 0 , the meter is in data logging mode. Changing this value from 0 (to 1 through 10) switches the meter to reading mode and selects a buffer to read. Data from the selected buffer appears in registers 8000 to 13760.

If the demand sub-interval timeout occurs while the user is reading a page (register $158 \neq 0$), the log data will be held in RAM until the next demand subinterval. At that time, both the saved data from the previous cycle and the new data will be written to the log, whether the page register has been set back to 0 or not. Error bits in the Log Status Register (160) track these conditions. Subsequent log writes will proceed normally. Provided the log read is concluded in less time than the demand sub-interval, this mechanism handles the occasional collision and prevents the user from reading data as the buffer is being updated.

The Log Status Register has additional error flag bits that indicate whether logging has been reset or interrupted (power cycle, etc.) during the previous demand sub-interval, and whether the Real Time Clock has been changed (re-initialized to default date/time due to a power-cycle or modified via Modbus commands).

STANDARD MODBUS DEFAULT SETTINGS

Table 7 Modbus Default Settings

Setting	Value	Modbus Register
Setup Password	00000	-
Reset Password	00000	-
System Type	$40(3+N)$ Wye	130
CT Primary Ratio (if CTs are not included)	100 A	131
CT Secondary Ratio	0.33 V	132
PT Ratio	1:1 (none)	133
System Voltage	600 V L-L	134
Max. Theoretical Power (Analog Output: full scale (20 mA or 5 V))	104 kW	135
Display Mode	1 (IEEE)	137
Phase Loss	10% of System Voltage (60V), 25\% Phase to Phase Imbalance	142, 143
Pulse Energy	1 (kWh/pulse)	144
Demand: number of sub-intervals per interval	1 (block mode)	149
Demand: sub-interval length	$900 \mathrm{sec}(15 \mathrm{~min})$	150
Modbus Address	001	-
Modbus Baud Rate	19200 baud	-
Modbus Parity	Even	-
Log Read Page	0	158
Logging Configuration Register	0	159
Log Register Pointer 1	1 (Real Energy MSR)	169
Log Register Pointer 2	2 (Real Energy LSR)	170
Log Register Pointer 3	29 (Reactive Energy MSR)	171
Log Register Pointer 4	30 (Reactive Energy LSR)	172
Log Register Pointer 5	37 (Real Demand)	173
Log Register Pointer 6	38 (Reactive Demand)	174
Log Register Pointer 7	39 (Apparent Demand)	175
Log Register Pointer 8	155 (Month/Day)	176
Log Register Pointer 9	156 (Year/Hour)	177
Log Register Pointer 10	157 (Minutes/Seconds)	178

Supported Modbus Commands

The EM3555 Full Data Set (FDS) features data outputs such as demand calculations, per phase signed watts VA and VAR, import/export Wh and VAh, and VARh accumulators by quadrant. The Data Logging function adds log configuration registers 155-178 and log buffer reading at registers 8000-13760. The meter supports variable CTs and PTs, allowing a much wider range of operation from $90 \mathrm{~V} \times 5 \mathrm{~A}$ up to $32000 \mathrm{~V} \times 32000 \mathrm{~A}$. To promote this, the meter permits variable scaling of the 16-bit integer registers via the scale registers. The 32-bit floating point registers do not need to be scaled.

Integer registers begin at 001 (0x001). Floats at 257 (0x101). Configuration registers at 129 (0x081). Values not supported in a particular System Type configuration will report QNAN (0x8000 in Integer Registers, 0x7FC00000 in Floating Point Registers). Register addresses are in PLC style base 1 notation. Subtract 1 from all addresses for the base 0 value used on the Modbus RS-485 link.

Note: ID String information varies from model to model. Text shown here is an example.

Table 8 Supported Commands

Command	Description
0x03	Read Holding Registers
0x04	Read Input Registers
0x06	Preset Single Register
0x10	Preset Multiple Registers
	Report ID
0x11	Return string: byte0: address byte1: 0x11 byte2: \#bytes following w/out crc byte3: ID byte $=247$ byte4: status $=0 \times F F$ if the operating system is used; status = 0×00 if the reset system is used bytes5+: ID string = "Schneider Electric EM3555 Power Meter Full Data Set" or "Schneider Electric EM3555 Power Meter - RESET SYSTEM RUNNING RS Version x.xxx" last 2 bytes: CRC
	Read Device Identification, BASIC implementation (0x00, 0x01 and 0x02 data), Conformity Level 1.
0x2B	Object values: 0x01: "Schneider Electric EM" 0×02 : "3555" $0 x 03$: "Vxx.yyy", where xx.yyy is the OS version number (reformatted version of the Modbus register \#7001, (Firmware Version, Operating System). If register \#7001 == 12345, then the 0×03 data would be "V12.345").

Legend

The following table lists the addresses assigned to each data point. For floating point format variables, each data point appears twice because two 16-bit addresses are required to hold a 32-bit float value. Negative signed integers are 2's complement.

R/W	R=read only R/W=read from either integer or float formats, write only to integer format.	
	Value is stored in non-volatile memory. The value will still be available if the meter experiences a power loss and reset.	
	Ulnt	Unsigned 16-bit integer.
	SInt	Signed 16-bit integer.
	ULong	Unsigned 32-bit integer; Upper 16-bits (MSR) in lowest numbered / first listed register (001/002 = MSR/LSR).
	SLong	Signed 32-bit integer; Upper 16-bits (MSR) in lowest numbered / first listed register (001/002 = MSR/LSR).
	Float	32-bit floating point; Upper 16-bits (MSR) in lowest numbered / first listed register (257/258 = MSR/LSR). Encoding is per IEEE standard 754 single precision.
Units	Lists the physical units that a register holds.	

SunSpec Alliance Interoperability Specification Compliance

This meter implements the draft SunSpec 1.0 common elements starting at base 1 address 40001, and the proposed SunSpec 1.1 meter model at 40070 (these addresses are not in Modicon notation). See www.sunspec.org for copies of these specifications.

	\sum	\geq	$\begin{aligned} & \text { 충 } \\ & \text { E. } \\ & \text { O } \end{aligned}$			$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\text { ㄹ }}{0} \\ & \text { ロ } \end{aligned}$	Descri	ption		
Integer Data: Summary of Active Phases										
001 002 003	R	NV	SLong	kWh	E	-2147483647 to +2147483647	Real Energy: Net (Import - Export)	MSR LSR	Accumulated Real Energy (Ph)	Clear via reset register 129
003 004	R	NV	ULong	kWh	E	$\begin{aligned} & 0 \text { to } \\ & 0 x F F F F F F F F \end{aligned}$	Real Energy: Quadrants 1 \& 4 Import	$\begin{array}{\|l\|} \hline \text { MSR } \\ \hline \text { LSR } \end{array}$		
005 006	R	NV	ULong	kWh	E	$\begin{aligned} & 0 \text { to } \\ & 0 x F F F F F F F F \end{aligned}$	Real Energy: Quadrants 2 \& 3 Export	$\begin{array}{\|l\|} \hline \text { MSR } \\ \hline \text { LSR } \\ \hline \end{array}$		
007 008 009	R	NV	ULong	kVARh	E	$\begin{aligned} & 0 \text { to } \\ & 0 x F F F F F F F F \end{aligned}$	Reactive Energy - Quadrant 1: Lags Import Real Energy (IEC) Inductive (IEEE)	$\begin{array}{\|l\|} \hline \text { MSR } \\ \hline \text { LSR } \\ \hline \end{array}$	Accumulated Reactive Energy (Qh): Quadrants $1+2$ = Import Quadrants $3+4$ = Export	
009 010 011	R	NV	ULong	kVARh	E	$\begin{aligned} & 0 \text { to } \\ & 0 x F F F F F F F F \end{aligned}$	Reactive Energy - Quadrant 2: Leads Export Real Energy (IEC) Inductive (IEEE)	$\begin{array}{\|l\|} \hline \text { MSR } \\ \hline \text { LSR } \end{array}$		
011 012 013	R	NV	ULong	kVARh	E	$\begin{aligned} & 0 \text { to } \\ & 0 x F F F F F F F F \end{aligned}$	Reactive Energy - Quadrant 3: Lags Export Real Energy (IEC) Capacitive (IEEE)	$\begin{array}{\|l\|} \hline \text { MSR } \\ \hline \text { LSR } \end{array}$		
013 014 0	R	NV	ULong	kVARh	E	$\begin{aligned} & 0 \text { to } \\ & 0 x F F F F F F F F \end{aligned}$	Reactive Energy - Quadrant 4: Leads Import Real Energy (IEC) Capacitive (IEEE)	$\begin{array}{\|l\|} \hline \text { MSR } \\ \hline \text { LSR } \end{array}$		
015 016	R	NV	SLong	kVAh	E	$\begin{array}{\|l\|} \hline-2147483647 \\ \text { to } \\ +2147483647 \\ \hline \end{array}$	Apparent Energy: Net (Import - Export)	MSR	Accumulated Apparent Energy (Sh): Import and Export correspond with Real Energy	
017 018	R	NV	ULong	kVAh	E	$\begin{aligned} & 0 \text { to } \\ & 0 x F F F F F F F F \end{aligned}$	Apparent: Quadrants 1 \& 4 Import	MSR LSR		
019 020	R	NV	ULong	kVAh	E	$\begin{aligned} & 0 \text { to } \\ & 0 x F F F F F F F F \end{aligned}$	Apparent: Quadrants 2 \& 3 Export	$\begin{array}{\|l\|} \hline \text { MSR } \\ \hline \text { LSR } \\ \hline \end{array}$		
021	R		SInt	kW	W	$\begin{array}{\|l} -32767 \text { to } \\ +32767 \end{array}$	Total Instantaneous Real (P) Power			
022	R		SInt	kVAR	W	0 to 32767	Total Instantaneous Reactive (Q) Power			
023	R		Ulnt	kVA	W	0 to 32767	Total Instantaneous Apparent (S) Power (vector sum)			
024	R		SInt	Ratio	0.0001	$\begin{aligned} & -10000 \text { to } \\ & +10000 \end{aligned}$	Total Power Factor (total kW / total kVA)			
025	R		Ulnt	Volt	V	0 to 32767	Voltage, L-L (U), average of active phases			
026	R		Ulnt	Volt	V	0 to 32767	Voltage, L-N (V), average of active phases			
027	R		Ulnt	Amp	1	0 to 32767	Current, average of active phases			
028			Ulnt	Hz	0.01	4500 to 6500	Frequency			
029	R		SInt	kW	W	$\begin{aligned} & -32767 \text { to } \\ & +32767 \end{aligned}$	Total Real Power Present Demand			
030			SInt	kVAR	W	$\begin{aligned} & -32767 \text { to } \\ & +32767 \end{aligned}$	Total Reactive Power Present Demand			
031	R		SInt	kVA	W	$\begin{array}{\|l} \hline-32767 \text { to } \\ +32767 \end{array}$	Total Apparent Power Present Demand			

	$\sum_{\boxed{\prime}}$	\sum	$\begin{aligned} & \pi \\ & \text { B } \\ & \text { E } \\ & 0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathbb{0} \\ & \hline \mathbb{U} \\ & \boldsymbol{U} \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{1}{\pi} \\ & \underset{\sim}{0} \end{aligned}$	Description			
055	R	NV	ULong	kVARh	E	0 to 0xFFFFFFFF	Accumulated Q1 Reactive Energy, Phase A	MSR	Import	Accumulated Reactive Energy (Qh), Per Phase
056								LSR		
057	R	NV	ULong	kVARh	E	0 to 0xFFFFFFFFF	Accumulated Q1 Reactive Energy, Phase B	MSR		
058								LSR		
059	R	NV	ULong	kVARh	E	0 to 0xFFFFFFFFF	Accumulated Q1 Reactive Energy, Phase C	MSR		
060								LSR		
061	R	NV	ULong	kVARh	E	0 to 0xFFFFFFFFF	Accumulated Q2 Reactive Energy, Phase A	MSR		
062								LSR		
063	R	NV	ULong	kVARh	E	0 to 0xFFFFFFFF	Accumulated Q2 Reactive Energy, Phase B	MSR		
064								LSR		
065	R	NV	ULong	kVARh	E	0 to 0xFFFFFFFF	Accumulated Q2 Reactive Energy, Phase C	MSR		
066								LSR		
067	R	NV	ULong	kVARh	E	0 to 0xFFFFFFFF	Accumulated Q3 Reactive Energy, Phase A	MSR	Export	
068								LSR		
069	R	NV	ULong	kVARh	E	0 to 0xFFFFFFFF	Accumulated Q3 Reactive Energy, Phase B	MSR		
070								LSR		
071	R	NV	ULong	kVARh	E	0 to 0xFFFFFFFFF	Accumulated Q3 Reactive Energy, Phase C	MSR		
072								LSR		
073	R	NV	ULong	kVARh	E	0 to 0xFFFFFFFF	Accumulated Q4 Reactive Energy, Phase A	MSR		
074								LSR		
075	R	NV	ULong	kVARh	E	0 to 0xFFFFFFFFF	Accumulated Q4 Reactive Energy, Phase B	MSR		
076								LSR		
077	R	NV	ULong	kVARh	E	0 to 0xFFFFFFFF	Accumulated Q4 Reactive Energy, Phase C	MSR		
078								LSR		

	\gtreqless	\sum	$\begin{aligned} & \text { त } \\ & \frac{1}{5} \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { Con } \\ & \end{aligned}$	$\begin{aligned} & \mathbb{O} \\ & \hline \mathbb{J} \\ & \mathcal{O} \end{aligned}$		Description				
079 080	R	NV	ULong	kVAh	E	0 to 0xFFFFFFFF	Accumulated Apparent Energy, Phase A	$\begin{array}{\|l\|} \hline \text { MSR } \\ \hline \text { LSR } \\ \hline \end{array}$	Import	Accumulated Apparent Energy (Sh), Per Phase	
081 082	R	NV	ULong	kVAh	E	0 to 0xFFFFFFFF	Accumulated Apparent Energy, Phase B	$\begin{array}{\|l\|} \hline \text { MSR } \\ \hline \text { LSR } \\ \hline \end{array}$			
083 084 085	R	NV	ULong	kVAh	E	0 to 0xFFFFFFFF	Accumulated Apparent Energy, Phase C	$\begin{array}{\|l\|} \hline \text { MSR } \\ \hline \text { LSR } \\ \hline \end{array}$			
085 086	R	NV	ULong	kVAh	E	0 to 0xFFFFFFFF	Accumulated Apparent Energy, Phase A	$\begin{array}{\|l\|} \hline \text { MSR } \\ \hline \text { LSR } \\ \hline \end{array}$	Export		
087 088	R	NV	ULong	kVAh	E	0 to 0xFFFFFFFF	Accumulated Apparent Energy, Phase B	$\begin{array}{\|l\|} \hline \text { MSR } \\ \hline \text { LSR } \\ \hline \end{array}$			
089 090	R	NV	ULong	kVAh	E	0 to 0xFFFFFFFF	Accumulated Apparent Energy, Phase C	$\begin{array}{\|l\|} \hline \text { MSR } \\ \hline \text { LSR } \\ \hline \end{array}$			
091	R		SInt	kW	W	$\begin{array}{\|l} -32767 \text { to } \\ +32767 \end{array}$	Real Power (P), Phase A		Real Power (P)		
092	R		SInt	kW	W	$\begin{array}{\|l} -32767 \text { to } \\ +32767 \end{array}$	Real Power (P), Phase B				
093	R		SInt	kW	W	$\begin{array}{\|l} -32767 \text { to } \\ +32767 \end{array}$	Real Power (P), Phase C				
094	R		SInt	kVAR	W	$\begin{array}{\|l} -32767 \text { to } \\ +32767 \end{array}$	Reactive Power (Q), Phase A		Reactive Power (Q)		
095	R		SInt	kVAR	W	$\begin{array}{\|l} -32767 \text { to } \\ +32767 \end{array}$	Reactive Power (Q), Phase B				
096	R		SInt	kVAR	W	$\begin{array}{\|l} -32767 \text { to } \\ +32767 \end{array}$	Reactive Power (Q), Phase C				
097	R		Ulnt	kVA	W	0 to 32767	Apparent Power (S), Phase A		Apparent Power (S)		
098	R		Ulnt	kVA	W	0 to 32767	Apparent Power (S), Phase B				
099	R		Ulnt	kVA	W	0 to 32767	Apparent Power (S), Phase C				
100	R		SInt	Ratio	0.0001	$\begin{aligned} & -10000 \text { to } \\ & +10000 \end{aligned}$	Power Factor (PF), Phase A		Power Factor (PF)		
101	R		SInt	Ratio	0.0001	$\begin{array}{\|l} -10000 \text { to } \\ +10000 \end{array}$	Power Factor (PF), Phase B				
102	R		SInt	Ratio	0.0001	$\begin{aligned} & -10000 \text { to } \\ & +10000 \end{aligned}$	Power Factor (PF), Phase C				
103	R		Ulnt	Volt	V	0 to 32767	Voltage (U), Phase A-B		Line-to-Line voltage (U)		
104	R		Ulnt	Volt	V	0 to 32767	Voltage (U), Phase B-C				
105	R		Ulnt	Volt	V	0 to 32767	Voltage (U), Phase A-C				
106	R		Ulnt	Volt	V	0 to 32767	Voltage (V), Phase A-N		Line-to-Neutral voltage (V)		
107	R		Ulnt	Volt	V	0 to 32767	Voltage (V), Phase B-N				
108	R		Ulnt	Volt	V	0 to 32767	Voltage (V), Phase C-N				
109	R		Ulnt	Amp	1	0 to 32767	Current, Phase A		Current		
110	R		Ulnt	Amp	1	0 to 32767	Current, Phase B				
111	R		Ulnt	Amp	1	0 to 32767	Current, Phase C				
112	R		Ulnt				Reserved (returns 0x8000- QNAN)				

	$\gtrless_{\mathbb{K}}$	\geq	$\begin{gathered} \text { त } \\ \text { E } \\ \frac{1}{0} \\ \hline \end{gathered}$	$\xrightarrow{0}$	$\begin{aligned} & \text { o } \\ & \text { む̃ } \\ & \text { か } \end{aligned}$			Descrip	On
142	R/W	NV	Ulnt	\%		1-99	Phase Loss Voltage Threshold in percent of system voltage (register 134). Default value is 10 (\%). Any phase (as configured in register 130) whose level drops below this threshold triggers a phase loss alert, i.e., if the system voltage is set to 480 V L-L, the L-N voltage for each phase should be 277 V . When the threshold is set to 10%, if any phase drops more than 10% below 277 V , (less than 249 V), or if any L-L voltage drops more than 10% below 480 V (less than 432 V) the corresponding phase loss alarm bit in register 146 will be true.		Phase Loss Output Note: The phases tested are determined by the system type.
143	R/W	NV	Ulnt	\%		1-99	Phase Loss Imbalance Thresh is 25% phase to phase differe +N) system type (40 in regist tral and line-to-line voltages a system type (31 in register 13 voltages are examined. In a s system type (12 in register 13 voltage are compared.	hold in Percent. Default nce. For a 3-phase Y (3 er 130), both line-to-neure tested. In a 3-phase 3), only line-to-line ingle split-phase ($2+\mathrm{N}$) 0), just the line-to-neutral	
144	R/W	NV	Ulnt	Wh		$\begin{aligned} & 10000, \\ & 1000, \\ & 100, \\ & 10 \end{aligned}$	Wh (\& VARh, if equipped) Energy per Pulse Output Contact Closure. If the meter cannot find a pulse duration that will keep up with the max. system power (register 135), it will reject the new value. Check the meter configuration and/or try a larger value.	kWh (\& VARh, if equipped) Pulse Contacts	
145	R	NV	Ulnt	msec		$\begin{aligned} & 500, \\ & 250, \\ & 100, \\ & 50, \\ & 25, \\ & 10 \end{aligned}$	Pulse Contact Closure Duration in msec. Read-only. Set to the slowest duration that will keep up with the theoretical max. system power (register 135). The open time \geq the closure time, so the max. pulse rate (pulses per sec) is the inverse of double the pulse time.	Note: The kWh pulse con of $1800000 \times$ Wh pulse	htact can keep up with a maximum power (Watts) weight \div contact closure duration (in msec).
146	R		Ulint				Error Bitmap. 1 = Active: Bit 0: Phase A Voltage out of range Bit 1: Phase B Voltage out of range Bit 2: Phase C Voltage out of range Bit 3: Phase A Current out of range Bit 4: Phase B Current out of range Bit 5: Phase C Current out of range Bit 6: Frequency out of the range of 45 to 65 Hz -OR- insufficient voltage to determine frequency. Bit 7: Reserved for future use Bit 8: Phase Loss A Bit 9: Phase Loss B Bit 10: Phase Loss C Bit 11: Low Power Factor on A with one or more phases having a PF less than 0.5 due to mis-wiring of phases Bit 12: Low Power Factor on B Bit 13: Low Power Factor on C Bit 14: Energy pulse output overrun error. The pulse outputs are unable to keep up with the total real power (registers 3 and 261/262). To fix, increase the pulse energy register (register 144) and reset the energy accumulators (see reset register 129). Bit 15: Energy pulse output configuration error (present pulse energy setting may not keep up with the theoretical max. system power; see register 135). To fix, increase the pulse energy (register 144).		
147	R	NV	Ulnt			0-32767	Count of Energy Accumulator resets		
148	R		UInt				Reserved (returns 0)		

	$\sum_{\mathbb{K}}$	\sum	$\begin{aligned} & \text { त } \\ & \text { है } \\ & \text { E } \\ & \hline \mathbf{0} \end{aligned}$		© ¢ O	$\begin{aligned} & \text { 잉 } \\ & \stackrel{1}{\pi} \\ & \underset{\sim}{0} \end{aligned}$	Description
149	R/W	NV	Ulnt			1-6	Number of Sub-Intervals per Demand Interval. Sets the number of sub-intervals that make a single demand interval. For block demand, set this to 1. Default is 1. When sub-interval length register $\# 150$ is set to 0 (sync-to-comms mode), this register is ignored.
150	R/W	NV	Ulnt	Seconds		0, 10-32767	Sub-Interval Length in seconds. For sync-to-comms, set this to 0 and use the reset register (129) to externally re-start the sub-interval. This is also the logging interval.
151	R/W		Ulnt			1-32767	Reserved (returns 0)
152	R	NV	Ulnt			0-32767	Power Up Counter
153	R	NV	Ulnt			0-32767	Output Configuration. EM3555 units have a N.O. energy contact and N.C. (Form B) phase loss contact, so this register will always return a " 0 ".
154	R		Ulnt				Reserved (returns 0)
Logging Configuration and Status							
155	R/W	NV	Ulnt	Day / Month		See Bytes	Most Significant Byte (MSB) Least Significant Byte $($ LSB $)$ Day 1-31 (0x01-0x1F) Month 1-12 $(0 \times 01-0 \times 0 \mathrm{C})$ Date / Time Clock. Following a power cycle, resets to:
156	R/W	NV	Ulnt	Hour / Year		See Bytes	Hour 0-23 (0x00-0x17) Year 0-199 $(0 \times 00-0 \times C 7)$ Hour 00 Year (20) 00
157	R/W	NV	Ulnt	Seconds / Minutes		See Bytes	Seconds 0-59 (0x00-0x3B) $\quad \begin{aligned} & \text { Minutes 0-59 } \\ & (0 \times 00-0 \times 3 B)\end{aligned}$
158	R/W	NV	Ulnt			0-10	Logging Read Page Register. Selects which of the register logs to read (see registers 169-178). 1-10 are valid entries that put the meter into log reading mode, temporarily pausing logging. When set to 0 (no variable selected for reading), normal logging resumes. The meter will buffer one set of log entries while in reading mode if a sub-interval timeout occurs (read/write collision). Default is 0 . Note: this buffered data will be written to the log, and logging will resume on the following sub-interval timeout whether the page register has been cleared or not, resulting in the appearance of data moving in the buffer during reads. To avoid this, log buffer reads should be completed and this register set back to 0 in less time than the demand sub-interval (preferred) or logging should be halted by setting Bit 1 in register 158 (logs may be missed).
159	R/W	NV	Ulnt				Logging Configuration Register (Bit Mapped): Bit 0: Clear to 0 for circular log buffer mode. Set to 1 for single shot logging mode. Default is 0 (Circular). Bit 1: Clear to 0 to enable Logging. Set to 1 to halt logging. Default is 0 (Log).
160	R	NV	Ulnt				Logging Status Register (Bit Mapped): Bit 0: Log buffer full - Set to 1 when one single shot mode has filled the log buffer. In this condition, the Logged Entry Count will continue to increment. Cleared to 0 when logging is restarted (see reset command register 129). Bit 1: Log Buffer Read Collision 1 - Set to 1 if the meter tried to save log data while the user was reading the \log (Logging Page Register has been set to something other than 0). On the first collision, the meter holds the data until the next sub-interval and then writes the saved data to the log as well as the data for that interval. This bit is cleared to 0 on the first demand interval with Logging Page Register $=0$. Bit 2: Log Buffer Read Collision 2 - Set to 1 on the 2nd attempt to save log data while the user is reading the log (Logging Page Register is set to something other than 0). At this point the meter ignores the read condition and does a double write, first of the values saved from the previous cycle, and then the present values. If the read condition is not removed the meter continues to write the log data as it normally would. This bit is cleared to 0 on the first demand interval with Logging Page Register $=0$. Bit 3: Logging Reset - The log has been reset during the previous demand sub-interval. Bit 4: Logging Interrupted - logging has been interrupted (power cycled, log configuration change, etc.) during the previous demand sub-interval. Bit 5: RTC Changed - The real time clock had been changed during the previous demand sub-interval. Bit 6: RTC Reset - The real time clock has been reset to the year 2000 and needs to be re-initialized.

	\gtreqless	\geq	$\begin{gathered} \text { \# } \\ \text { E } \\ \text { E } \\ \hline \mathbf{O} \end{gathered}$		$\begin{aligned} & \frac{0}{\pi} \\ & \text { U } \\ & \text { 心 } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { O } \\ & \text { 두 } \\ & \text { ロ } \end{aligned}$	Description					
161	R	NV	Ulnt			0-32767	Log Buffer Wrap / Missed Log Counter. In continuous mode, this counter increments each time the internal circular log buffer wraps and overwrites old data. The total number of logged entries since the last log reset is: (Register 161×5760) + Register 163. In single shot mode this counter is the number of log entries lost due to the buffer being full. The counter is cleared on logging reset.					
162	R	NV	Ulnt			0-32767	Max Number of Logging Days. Based on the Sub-Interval Length and the depth of the log buffer, this register shows the maximum number of days that data will be logged following a reset until the Buffer is full (Single Shot Mode) or overwrites old data (Continuous).					
163	R	NV	Ulnt			0-32767	Number of Logged Entries since the log buffer wrapped or was reset. In single shot mode, this is the total number of valid entries in the buffer. Any entries beyond this will read back as QNAN (0x8000).					
164	R	NV	ULong	kWh	E	0-0xFFFF	Real Energy Consumption (MSR)	Real Energy (Register 001/002) starting value. Corresponds to when logging is started, reset, or rolls.				
165						0-0xFFFF	Real Energy Consumption (LSR)					
166	R	NV	Ulnt	Month / Day		See Bytes	Most Significant Byte (MSB)	$\begin{aligned} & \text { Least Significant Byte } \\ & \text { (LSB) } \end{aligned}$	Date \& Time of the newest entry in the log. After a power cycle, resets to:			
							Day 1-31 (0x01-0x1F)	$\begin{aligned} & \text { Month } 1-12 \\ & (0 \times 01-0 \times 0 \mathrm{C}) \end{aligned}$				
167	R	NV	Ulnt	Year / Hour		See Bytes	Hour 0-23 (0x00-0x17)	$\begin{aligned} & \text { Year 0-199 } \\ & (0 \times 00-0 \times C 7) \end{aligned}$	$\begin{array}{\|l\|} \text { Day } 0 \\ \text { Hour } 0 \end{array}$	$\begin{aligned} & \text { Month } 01 \\ & \text { Year } \quad(20) 00 \end{aligned}$		
168	R	NV	Ulnt	Minutes / Seconds		See Bytes	Seconds 0-59 (0x00-0x3B)	$\begin{array}{\|l} \text { Minutes 0-59 } \\ (0 \times 00-0 \times 3 B) \\ \hline \end{array}$				
169	R/W	NV	Ulnt			$\begin{aligned} & \text { 1-42, } \\ & 146, \\ & 155-157, \\ & 257-336 \end{aligned}$	Log Register 1 Default is 3 (Import Real Energy MSR)	Log Register Selection - Write the number of the 16 bit register to be logged. To log a 32 bit value (such as accumulators and floating point values) two log registers must be used, one each for the most and least significant register (MSR \& LSR).				
170	R/W	NV	Ulnt				Log Register 2 Default is 4 (Import Real Energy LSR)					
171	R/W	NV	Ulnt				Log Register 3 Default is 5 (Export Real Energy MSR)					
172	R/W	NV	Ulnt				Log Register 4 Default is 6 (Export Real Energy LSR)					
173	R/W	NV	Ulnt				Log Register 5 Default is 29 (Real Demand)					
174	R/W	NV	Ulnt				Log Register 6 Default is 30 (Reactive Demand)					
175	R/W	NV	Ulnt				Log Register 7 Default is 31 (Apparent Demand)					
176	R/W	NV	Ulnt				Log Register 8 Default is 155 (Month/Day)					
177	R/W	NV	Ulnt				Log Register 9 Default is 156 (Year/Hour)					
178	R/W	NV	Ulnt				Log Register 10 Default is 157 (Minutes/ Seconds)					

REGISTER $彐<Z \geq$

 Description

Floating Point Data: Summary of Active Phases

3	\sum	苋	$\begin{aligned} & \text { © } \\ & \stackrel{y}{5} \end{aligned}$	$$

 Description

Floating Point Data: Per Phase

Invalid or Quiet Not A Number (QNAN) conditions are indicated by 0x8000 (negative zero) for 16 bit integers and 0x7FC00000 for 32 bit floating point numbers.

Floating point numbers are encoded per the IEEE 754 32-bit specifications.

SUNSPEC COMPLIANT COMMON AND METER MODEL REGISTER BLOCKS

Table 9 SunSpec Compliance Information (see www.sunspec.org for the original specifications)

$\begin{aligned} & \text { ড } \\ & \stackrel{0}{0} \\ & \underset{0}{0} \\ & \times 0 \end{aligned}$	$\sum_{囚}$	\sum	$\begin{aligned} & \text { \# } \\ & \text { E } \\ & \text { ㅇ } \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{1}{\overparen{~}} \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { O } \\ & \text { 두 } \\ & \text { ロ } \end{aligned}$	SunSpec Name	Description
SunSpec 1.0 Common Model								
40001 40002	R	NV	ULong			$\begin{aligned} & 0 \times 5375 \\ & 6 \mathrm{e} 53 \end{aligned}$	C_SunSpec_ID	ASCII "SunS". Identifies this as the beginning of a SunSpec Modbus point
40003	R	NV	Ulint			1	C_SunSpec_DID	SunSpec common model Device ID
40004	R	NV	Ulnt			65	$\begin{aligned} & \text { C_SunSpec_ } \\ & \text { Length } \end{aligned}$	Length of the common model block
40005 to 40020	R	NV	String (32)	ASCII			C_Manufacturer	$\begin{array}{\|l} \hline \text { null terminated ASCII text string = "Schneider } \\ \text { Electric" } \end{array}$
40021 to 40036	R	NV	String (32)	ASCII			C_Model	null terminated ASCII text string = "EM3555"
40037 to 40044	R	NV	String (16)	ASCII			C_Options	null terminated ASCII text string
40045 to 40052	R	NV	String (16)	ASCII			C_Version	null terminated ASCII text string
40053 to 40068	R	NV	String (32)	ASCII			C_SerialNumber	null terminated ASCII text string
40068	R	NV	Ulnt	ASCII			$\begin{aligned} & \text { C_SunSpec_ } \\ & \text { Length } \end{aligned}$	Modbus address

SunSpec 1.1 Integer Meter Model

Identification								
40070	R	NV	Ulnt			201 to 204	C_SunSpec_DID	SunSpec Integer meter model device IDs. Meter configuration by device ID: 201 = single phase (A-N or A-B) meter $202=$ split single phase (A-B-N) meter $203=$ Wye-connect 3-phase (ABCN) meter 204 = delta-connect 3-phase (ABC) meter
40071	R	NV	Ulnt			105	$\begin{aligned} & \text { C_SunSpec_ } \\ & \text { Length } \end{aligned}$	Length of the meter model block
Current								
40072	R		SInt	Amps	M_AC_Current_SF	-32767 to +32767	M_AC_Current	AC Current (sum of active phases)
40073	R		SInt	Amps	M_AC_Current_SF	-32767 to +32767	M_AC_Current_A	Phase AAC current
40074	R		SInt	Amps	M_AC_Current_SF	-32767 to +32767	M_AC_Current_B	Phase B AC current
40075	R		SInt	Amps	M_AC_Current_SF	-32767 to +32767	M_AC_Current_C	Phase C AC current
40076	R	NV	SInt		1		M_AC_Current_CN	AC Current Scale Factor
Voltage: Line to Neutral								
40077	R		SInt	Volts	M_AC_Voltage_SF	-32767 to +32767	M_AC_Voltage_LN	Line to Neutral AC voltage (average of active phases)
40078	R		SInt	Volts	M_AC_Voltage_SF	-32767 to +32767	M_AC_Voltage_AN	Phase A to Neutral AC Voltage
40079	R		SInt	Volts	M_AC_Voltage_SF	-32767 to +32767	M_AC_Voltage_BN	Phase B to Neutral AC Voltage
40080	R		SInt	Volts	M_AC_Voltage_SF	-32767 to +32767	M_AC_Voltage_CN	Phase C to Neutral AC Voltage
Voltage: Line to Line								
40081	R		SInt	Volts	M_AC_Voltage_SF	-32767 to +32767	M_AC_Voltage_LL	Line to Line AC voltage (average of active phases)
40082	R		SInt	Volts	M_AC_Voltage_SF	-32767 to +32767	M_AC_Voltage_AB	Phase A to Phase B AC Voltage
40083	R		SInt	Volts	M_AC_Voltage_SF	-32767 to +32767	M_AC_Voltage_BC	Phase B to Phase C AC Voltage
40084	R		SInt	Volts	M_AC_Voltage_SF	-32767 to +32767	M_AC_Voltage_CA	Phase C to Phase A AC Voltage
40085	R	NV	SInt		1		M_AC_Voltage_SF	AC Voltage Scale Factor
Frequency								
40086	R		SInt	Hertz	M_AC_Freq_SF	-32767 to +32767	M_AC_Freq	AC Frequency
40087	R	NV	SInt	SF	1		M_AC_Freq_SF	AC Frequency Scale Factor

	\gtreqless	\sum	$\begin{aligned} & \text { \# } \\ & \text { E } \\ & \text { B } \\ & \hline \end{aligned}$		$$		SunSpec Name	Description
Power								
Real Power								
40088	R		SInt	Watts	M_AC_Power_SF	-32767 to +32767	M_AC_Power	Total Real Power (sum of active phases)
40089	R		SInt	Watts	M_AC_Power_SF	-32767 to +32767	M_AC_Power_A	Phase AAC Real Power
40090	R		SInt	Watts	M_AC_Power_SF	-32767 to +32767	M_AC_Power_B	Phase B AC Real Power
40091	R		SInt	Watts	M_AC_Power_SF	-32767 to +32767	M_AC_Power_C	Phase AAC Real Power
40092	R	NV	SInt	SF	1		M_AC_Power_SF	AC Real Power Scale Factor
Apparent Power								
40093	R		SInt	Volt-Amps	M_AC_VA_SF	-32767 to +32767	M_AC_VA	Total AC Apparent Power (sum of active phases)
40094	R		SInt	Volt-Amps	M_AC_VA_SF	-32767 to +32767	M_AC_VA_A	Phase A AC Apparent Power
40095	R		SInt	Volt-Amps	M_AC_VA_SF	-32767 to +32767	M_AC_VA_B	Phase B AC Apparent Power
40096	R		SInt	Volt-Amps	M_AC_VA_SF	-32767 to +32767	M_AC_VA_C	Phase A AC Apparent Power
40097	R	NV	SInt	SF	1		M_AC_VA_SF	AC Apparent Power Scale Factor
Reactive Power								
40098	R		SInt	VAR	M_AC_VAR_SF	-32767 to +32767	M_AC_VAR	Total AC Reactive Power (sum of active phases)
40099	R		SInt	VAR	M_AC_VAR_SF	-32767 to +32767	M_AC_VAR_A	Phase AAC Reactive Power
40100	R		SInt	VAR	M_AC_VAR_SF	-32767 to +32767	M_AC_VAR_B	Phase B AC Reactive Power
40101	R		SInt	VAR	M_AC_VAR_SF	-32767 to +32767	M_AC_VAR_C	Phase A AC Reactive Power
40102	R	NV	SInt	SF	1		M_AC_VAR_SF	AC Reactive Power Scale Factor
Power Factor								
40103	R		SInt	\%	M_AC_PF_SF	-32767 to +32767	M_AC_PF	Average Power Factor (average of active phases)
40104	R		SInt	\%	M_AC_PF_SF	-32767 to +32767	M_AC_PF_A	Phase A Power Factor
40105	R		SInt	\%	M_AC_PF_SF	-32767 to +32767	M_AC_PF_B	Phase B Power Factor
40106	R		SInt	\%	M_AC_PF_SF	-32767 to +32767	M_AC_PF_C	Phase A Power Factor
40107	R	NV	SInt	SF	1		M_AC_PF_SF	AC Power Factor Scale Factor
Accumulated Energy								
Real Energy								
40108 40109 40110	R	NV	ULong	Watt-hours	M_Energy_W_SF	0x0 to 0xFFFFFFFF	M_Exported_W	Total Exported Real Energy
40110 40111	R	NV	ULong	Watt-hours	M_Energy_W_SF	0x0 to 0xFFFFFFFF	M_Exported_W_A	Phase A Exported Real Energy
40112	R	NV	ULong	Watt-hours	M_Energy_W_SF	0x0 to 0xFFFFFFFFF	M_Exported_W_B	Phase B Exported Real Energy
40114 40115 40176	R	NV	ULong	Watt-hours	M_Energy_W_SF	0x0 to 0xFFFFFFFF	M_Exported_W_C	Phase C Exported Real Energy
40116 40117 40118	R	NV	ULong	Watt-hours	M_Energy_W_SF	0x0 to 0xFFFFFFFFF	M_Imported_W	Total Imported Real Energy
40118	R	NV	ULong	Watt-hours	M_Energy_W_SF	0x0 to 0xFFFFFFFFF	M_Imported_W_A	Phase A Imported Real Energy
40120	R	NV	ULong	Watt-hours	M_Energy_W_SF	0x0 to 0xFFFFFFFF	M_Imported_W_B	Phase B Imported Real Energy
40122	R	NV	ULong	Watt-hours	M_Energy_W_SF	0x0 to 0xFFFFFFFF	M_Imported_W_C	Phase C Imported Real Energy
40124	R	NV	SF	SF	1		M_Energy_W_SF	Real Energy Scale Factor

	$\sum_{囚}$	\sum	$\begin{aligned} & \text { त } \\ & \text { E } \\ & \text { E } \\ & \text { ㅇ } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{y}{5} \end{aligned}$	$$	$\begin{aligned} & \text { 10 } \\ & \text { 울 } \\ & \stackrel{1}{\pi} \\ & \mathbb{ロ 1} \end{aligned}$	SunSpec Name	Description
Apparent Energy								
40125 40126	R	NV	ULong	VA－hours	M＿Energy＿VA＿SF	0x0 to 0xFFFFFFFF	M＿Exported＿VA	Total Exported Apparent Energy
40127 40128	R	NV	ULong	VA－hours	M＿Energy＿VA＿SF	0x0 to 0xFFFFFFFF	M＿Exported＿VA＿A	Phase A Exported Apparent Energy
40129 40130	R	NV	ULong	VA－hours	M＿Energy＿VA＿SF	0x0 to 0xFFFFFFFF	M＿Exported＿VA＿B	Phase B Exported Apparent Energy
40131 40132	R	NV	ULong	VA－hours	M＿Energy＿VA＿SF	0x0 to 0xFFFFFFFF	M＿Exported＿VA＿C	Phase C Exported Apparent Energy
40133 40134	R	NV	ULong	VA－hours	M＿Energy＿VA＿SF	0x0 to 0xFFFFFFFF	M＿Imported＿VA	Total Imported Apparent Energy
40135 40136	R	NV	ULong	VA－hours	M＿Energy＿VA＿SF	0x0 to 0xFFFFFFFF	M＿Imported＿VA＿A	Phase A Imported Apparent Energy
40137 40138	R	NV	ULong	VA－hours	M＿Energy＿VA＿SF	0x0 to 0xFFFFFFFF	M＿Imported＿VA＿B	Phase B Imported Apparent Energy
40139 40140	R	NV	ULong	VA－hours	M＿Energy＿VA＿SF	0x0 to 0xFFFFFFFF	M＿Imported＿VA＿C	Phase C Imported Apparent Energy
40141	R	NV	Ulint	SF	1		M＿Energy＿VA＿SF	Real Energy Scale Factor
Reactive Energy								
40142 40143	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Import＿VARh＿ Q1	Quadrant 1：Total Imported Reactive Energy
40144 40145	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Import＿VARh＿ Q1A	Phase A－Quadrant 1：Total Imported Reactive Energy
40146 40147	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Import＿VARh＿ Q1B	Phase B－Quadrant 1：Total Imported Reactive Energy
40148	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Import＿VARh＿ Q1C	Phase C－Quadrant 1：Total Imported Reactive Energy
40150	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFFF	M＿Import＿VARh＿ Q2	Quadrant 2：Total Imported Reactive Energy
40152 40153	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Import＿VARh＿ Q2A	Phase A－Quadrant 2：Total Imported Reactive Energy
40154 40155	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Import＿VARh＿ Q2B	Phase B－Quadrant 2：Total Imported Reactive Energy
40156 40157	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Import＿VARh＿ Q2C	Phase C－Quadrant 2：Total Imported Reactive Energy
40158 40159	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Export＿VARh＿ Q3	Quadrant 3：Total Exported Reactive Energy
40160 40161	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Export＿VARh＿ Q3A	Phase A－Quadrant 3：Total Exported Reactive Energy
40162 40163	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Export＿VARh＿ Q3B	Phase B－Quadrant 3：Total Exported Reactive Energy
40164 40165	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Export＿VARh＿ Q3C	Phase C－Quadrant 3：Total Exported Reactive Energy
40166 40167	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Export＿VARh＿ Q4	Quadrant 4：Total Exported Reactive Energy
40168 40169	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Export＿VARh＿ Q4A	Phase A－Quadrant 4：Total Exported Reactive Energy
40170 40171 40172	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Export＿VARh＿ Q4B	Phase B－Quadrant 4：Total Exported Reactive Energy
40172 40173	R	NV	ULong	VAR－hours	M＿Energy＿VAR＿SF	0x0 to 0xFFFFFFFF	M＿Export＿VARh＿ Q4C	Phase C－Quadrant 4：Total Exported Reactive Energy
40174	R	NV	Ulnt	SF	1		M＿Energy＿VA＿SF	Reactive Energy Scale Factor

TROUBLESHOOTING

Table $10 \quad$ Troubleshooting

Problem	Cause	Solution
The maintenance wrench icon appears in the power meter display.	There is a problem with the inputs to the power meter.	See the Alert sub-menu or the Diagnostic Alert Modbus Register 146
The display is blank after applying control power to the meter.	The meter is not receiving adequate power.	Verify that the meter control power is receiving the required voltage. Verify that the heart icon is blinking. Check the fuse.
The data displayed is inaccurate.	Incorrect setup values	Verify the values entered for power meter setup parameters (CT and PT ratings, system type, etc., see Setup section).
	Incorrect voltage inputs	Check power meter voltage input terminals to verify adequate voltage.
	Power meter is wired improperly.	Check all CTs and PTs to verify correct connection to the same service, CT and PT polarity, and adequate powering (see Wiring Diagrams section).
Cannot communicate with power meter from a remote personal computer.	Power meter address is incorrect.	Verify that the meter is correctly addressed (see Setup section).
	Power meter baud rate is incorrect.	Verify that the baud rate of the meter matches that of all other devices on its communications link (see Setup section).
	Communications lines are improperly connected.	Verify the power meter communications connections (see Communications section). Verify the terminating resistors are properly installed on both ends of a chain of units. Units in the middle of a chain should not have a terminator. Verify the shield ground is connected between all units.
Sign of one phase (real power) is incorrect	CT orientation reversed	Remove CT, reverse orientation, reconnect (qualified personnel only)

CHINA ROHS COMPLIANCE INFORMATION (EFUP TABLE)

ION, Modbus, and PowerLogic are either trademarks or registered trademarks of Schneider Electric in France, the USA and other countries. Other trademarks used are the property of their respective owners.
Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.
ZL0093-0A 11/2011
© 2011 Schneider Electric. All Rights Reserved.

